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The implications of the ZDO approximation for the evaluation of electric and magnetic
dipole transition moments are analyzed using an overlap ordered expansion of the type pro-
posed by Fiscaer-Hrarmars. The relative merits of electric dipole length and electric dipole
velocity matrix elements are discussed from the point of view of their use in conjunction with
the ZDO approximation.

Die Folgerungen aus der ZDO-Néherung fiir die Berechnung elektrischer und magneti-
scher Dipoliibergangsmomente werden mit Hilfe einer geordneten Entwicklung der Uber-
lappungsmatrix, wie von FiscHER-HIALMARS vorgeschlagen, untersucht. Die relativen Vor-
ziige der Benutzung von Matrixelementen des Dipolmomentoperators einerseits und des
Impulsoperators andererseits werden im Rahmen der ZDO-Néiherung diskutiert.

Analyse des implications de Tapproximation du recouvrement différentiel nul dans
Tévaluation des moments de transition dipolaire électrique et magnétique, en utilisant un
développement en série selon les puissances du recouvrement du type de celui proposé par
FiscrEr-Hiarmars. Les mérites relatifs des éléments de matrice des opérateurs longueur
dipolaire électrique et vitesse dipolaire électrique sont discutés du point de vue de leur
utilisation dans le cadre de 'approximation & recouvrement différentiel nul.

1. Introduction

One prominent approximation in current molecular orbital calculations on
larger molecules is the so-called zero-differential-overlap (ZDO) approximation
[11, 14] according to which the number and types of molecular integrals to be
evaluated are reduced considerably by formally neglecting the overlap distribu-
tion for atomic orbitals on different centers. It has repeatedly been argued [3, 6,
8, 12] that the use of the ZDO approximation amounts to a reinterpretation of
the basis set of atomie orbitals used for the construction of the molecular orbitals
such that this basis set should be a Lowdin orthogonalized orbital set [6] rather
than a non-orthogonal set of e.g. Slater-type orbitals.

Fisomer-HyatmARrs [3] has recently derived explicit expressions for such
orthogonalized orbitals and for the energy matrix elements between them in terms
of the original, non-orthogonal set of orbitals. This derivation is based upon an
ordered expansion of the overlap matrix for the relevant orbitals, and. it appeared
in the course of the derivation that nearest neighbour matrix elements for some
one-electron operators differ in magnitude and sign when evaluated respectively in
the orthogonal and in the non-orthogonal orbital basis. This difference is obtained
already by taking first order terms in the overlap-ordered expansion into account.
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It is, on the other hand, common usage to calculate the one-electron matrix
elements which arise in the evaluation of electric and magnetic dipole transition
moments [2] for electronic excitations in molecular systems from a non-orthogonal
atomic orbital set at the same time as the ZDO approximation is invoked for the
determination of the wavefunctions. It therefore seems relevant to investigate
whether differences similar to those found by FiscHER-H7aLMARS [3] for some
one-electron energy operator matrix elements can be expected to appear for the
operators used in the calculations of electric and magnetic dipole transition
moments. This is of particular importance for theoretical calculations of the
natural optical rotatory power since in this case the relative signs of the electric
and magnetic dipole transition moments are of ultimate importance [9].

FrscuEr-HraLMARS’ derivations [3] are made under the assumption that each
atomic center in the molecules contributes only one atomic orbital to the molecular
orbitals used in the description of the mobile electrons. This is, however, not the
cage if for instance n — 7+ excited states of ketones or heteroaromatics are con-
sidered. In these cases at least two atomic orbitals must be taken explicitly into
account for some of the atoms. We shall therefore consider the evaluation of the
matrix elements pertinent for the electric and magnetic dipole transition moments
for two different molecular systems. Firstly, the case treated by FiscEEr-HyAL-
MARS [3] in which the basis set of orbitals contains one orbital per atom. Secondly,
the situation where the molecular orbitals are built from two mutually orthogonal
sets of atomic orbitals where some atoms contribute two orbitals. The analysis is
in both cases carried out to first order in a nearest-neighbour overlap integral only
since the discrepancies observed by FIscHER-HjaLMARS are revealed in this
order of approximation as mentioned above.

Electric dipole transition moments can be calculated on the basis of either
the electric dipole length operator or the linear momentum operator (also called
the dipole velocity operator) [2]. For exact wavefunetions the two procedures must
lead to identical results, whereas inaccurate wavefunctions may lead to notably
different results for the two operators, and it is a point of current interest and
discussion which of the two procedures to use in any particular case [4, 15, 17]. We
shall therefore in the present communication consider the two procedures sepa-
rately and then ultimately compare their relative merits from the point of view of
their use in conjunction with the ZDO approximation.

2, One Orbital per Atom
a) Orbitals and general matrix elements

We shall in this section briefly recapitulate the pertinent parts of FIscHER-
Hiaimars’ derivations [3]. Consider a non-orthogonal set of atomic orbitals, yp,
which are assumed real. It is further assumed that no two orbitals are on the same
center and that all nearest neighbour overlap integrals are of approximately the
same magnitude. From this set of orbitals one can obtain a set of orthogonalized
orbitals [5], Ap, by the equation

2=y S (1)

where A and y are row matrices of the respective orbitals and § is the overlap
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matrix with elements: ,
Spqg = [ 2p 17 -

This overlap matrix can to first order in a nearest neighbour overlap integral be
written
S=1+a

where 1 is a unit matrix and @ is a symmetric matrix with elements:
ap,qg = Sp,pt1* Opt1,¢ + Sp,p—1"0p—1,q - (2)

A next-nearest neighbour overlap is of the order of magnitude of the square of a
nearest neighbour overlap and can hence consistently be neglected here [3]. The
matrix §-/¢ is then readily found to first order as:

S§h=1-%a (3)

and (1), (2) and (3) can be combined to give the following expression for an orbital
Ap belonging to the orthogonalized set

Ap= 2 yx [S7 iy = % %6Okp — T Ok, p)
P2

= 2p— % Spo-1 20— — % Sp,pr1 Zpt1- 4)

This orbital is essentially as well localized. as the orbital A,; the additional small
terms contribute the extra nodes which assure the required first order ortho-
gonality to the neighbouring orbitals in the set.

The following general relations between matrix elements of a one electron
operator, M, evaluated in respectively the A and the y basis are then obtained by
straightforward application of Eq. (4). The next-nearest neighbour matrix element
(7) in the 1 basis is included in order to ascertain that no non-negligible terms
arise in this matrix element.

ppmpdz = O | M | 29
= | M | w> — % 8p,01 [ | M | 20 + oo | M | op>] —
— % Sp,pa [xp | M | 2pia> + gon | M | 0] (5)
f ApMipadt = Oop | M | Apin)
= | M | gp1e> — % Sp,pa [tp | M| 20> + <xpta | M | zpd] (6)
leMAansz = p | M | Apr2y
= tp | M | go+2> — & Sp,pia tpa | M | gpead —
— % Spi,pi2 Ao | M | zp1a> = o(S?) . (7)
One electron matrix elements involving two non-orthogonal orbitals y, and
4¢ can be expected to be at most of the same order as the corresponding overlap
integral. All elements connecting non-nearest neighbour orbitals are therefore
neglected in (5) and (6) whereas we have kept the leading next-nearest neighbour
term in (7) in order to show that the three largest terms in the expansion of this

integral are all of second order. Non-nearest neighbour matrix elements are
therefore neglected in both the 4 and the y basis in the present discussion.
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b) Electric and magnetic dipole transition moments

As mentioned in the introduction two different operators can be used for the
evaluation of the intensity of an electric dipole transition, the two being respec-
tively the electric dipole length operator [2]:

ec=e(ix+jiy+Iz) (8)
where ¢ is the electronic charge, and the linear momentum operator [2]:
PN . , 0 , 0 0

The operator for the magnetic dipole transition moment is the angular momentum
operator [2]:

[=—dhixV)
d

Jo I I 3 , a o a

The hermitean character of the three operators gives the following relations:

aw | ex | x> = {xaler| 2o (11a)
g =<xe |0 | 200* =~ Cta |9 | 200 (11b)
o |1 x> = e | V] 20>* = — <ta | U] 200 (11¢)

where we have utilized that the operators (9) and (10) are purely imaginary
whereas the orbitals are assumed real. For the diagonal elements of the last two
operators we therefore obtain:

Ol lap =0 (12a)
o | U] gw> =0 (12b)

in agreement with the well-known result that an electron in a state described by
a real wavefunction does not carry any linear or angular momentum. Egs. (11)
and (12) can then be employed in conjunction with (5) and (6) to give the first
order relations between diagonal and nearest neighbour matrix elements of the
operators (8) to (10) evaluated in the 4 and y bases. One intermediate step is given
in each of the following equations and the particular relations, (11a) to (12b),
which go into the reductions are indicated in sharp parentheses.

Diagonal elements:

Ap I er |2p> ={4p | er ‘ 1o> — Sp,p-1<Xp ] et | K10 — Sp,p+1 Xp | er ] Ap+1)
=y | et | g0 [from (i1a)] (13a)

ol v |2y =L |0 ]| 20> —
~ % Sp.p1 [{xp | 0 | 2o + o | P | x20] —
— 3 8p,p01 [tw | 9 | 200> + tpa | 9| 2001 =10 (13b)
[from (11b) and (12a)]

@pl ! Mp>:<%p[1|lp>—
~ % 8p,01[xp | U] o> + o | 1] 2001 —
— % Sppnlltp | U o> + tpin [ 1] 4221 = 0 - (13¢)
[from (11c) and (12b)]
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Nearest neighbour elements:

g ler | Apy = (o | et | gprd —
— 3 8p,palyp | €| xo) -+ tpt1| et | gprad] (14a)

Ap | 9 | Apt> = | 0| xpi> —
— 3 8p,p11lxw | 9| 20> + wra | 9 | gp+2)]
= {qo | P | xp+> [from (12a)] (14b)

{p [ [ Mﬁ+1> = {yp I l I Ap+1) —
— 3 8p,p1lxp | 1] 00 + {gwra | 1] xp)]
=t | 1| gprry - [from (12b)] (14c¢)

It should be noted that (13b) and (13¢) are correct to all orders of approxima-
tion since the A orbitals are real by definition [compare (12a) and (12b)]. Further-
more, in (14b) and (14c) the terms containing 8y, p+1 vanish identically.

In (13a) and (14a) we have used that a two center dipole length matrix element
{xp |t | xe> can be reduced to an overlap integral [10], although the orbitals
entering the overlap integral are not necessarily identical to the orbitals in the
transition moment integral. From an order of magnitude point of view the correc-
tion terms in (13a) are hence of second order and are consequently neglected. The
terms in (14a) are on the other hand all of first order in the overlap, and even
though they tend to cancel they will in general leave a small, but non-vanishing,
first order value for the matrix element {1, |t |Ap+1). The nearest neighbour
elements of the dipole length operator are therefore significantly different in
magnitude and will, depending on the actual orbitals, in some cases, also be
different in sign when evaluated in the two bases. This result is similar to what
was found by Fiscuer-Hrarmars for kinetic and potential energy operators, and
it is in noteworthy contrast to the results obtained for the other matrix elements
considered in (13) and (14).

The element (14a) will, however, often appear along with the non-vanishing
diagonal element (13a) in any actual calculation of a dipole transition moment
(9 | t | 1) between two molecular orbitals

Pk = 2 CkpAp
and »

Q1= 20100 -
9
This is seen from the first order expansion

o | v | @y = 3 [erp cip Ao | T | Ap) + (Ckp Cipt1 + Chpra C1p) Ap | ¥ | Apd] - (15)
i

This means that the nearest neighbour element can, for most purposes, be neglected
compared to the diagonal terms, but it may be included in more accurate treat-
ments by evaluating the terms in (14a).

3. Two Mutually Orthogonal Sets of Atomie Orbitals
a) Orbitals and general matriz elements

We shall in this section consider a molecular system which has an inherent
symmetry such that the pertinent molecular orbitals can be constructed from two

24 Theoret. chim. Acta (Berl.), Vol. 6



346 A. E. HANSEN:

mutually orthogonal sets of atomic orbitals, and we shall restrict the considera-
tions to p-orbitals in real form but without any restrictions on the radial parts.
It is assumed that no two orbitals belonging to the same set are centered on the
same atom, whereas two orbitals from different sets may be associated with one
atom. Each of the two sets can now be orthogonalized separately by Eq. (1) since
there are no elements in the overlap matrix connecting orbitals of different sets.
This gives according to (4) the following expressions for the two resulting sets of
orthogonalized orbitals (a prime is used to distinguish between members of
different sets):

Ap=2p — & Spp1 Ap—1 — ¥ Sp,pr1 2pa (4)

Mo =p — % Spp1 Zp—1 — % Spp,41 A1 - (16)
Matrix elements involving orbitals belonging exclusively to one set are identical
to those derived in Section 1, and we can therefore concentrate on one- and two-
center integrals in which both primed and unprimed orbitals are represented. The
localized character of the A orbitals makes it possible to retain the terminology
one- respectively two-center terms meaning terms containing orbitals which have
their peak values at the same or at different centers. Two-center terms others than
nearest neighbour elements are neglected for reasons analogous to those outlined
in the discussion of Eq. (7). The one-center and nearest neighbour two-center
matrix elements of a one-electron operator M are then:

G | M| 2> = oo | M | > —
— 3 Spo1lto—1 | M | 25> + Sppslito | M | gpsd] —

— % Sp,onlton | M | 25> + Sppaln | M | xpsad] (17)
and
prr | M | 2> = Qo | M| 2> —
— 3 Spor1n | M | 15> + Sppriltprt | M | gpeid] - (18)

b) Electric and magnetic dipole transition moments

The three operators under consideration are given in Eqgs. (8), (9) and (10),
and the following relations result directly from the properties of the operators
and from the fact that the basis sets are restricted to real orbitals with the same
l-value,

(ol ev | gm0 =0 (19a)

o |0 Ly =0- (19b)
Egs. (19a) and (19b) reflect the Laporte rule of atomic spectroscopy [I]. The
matrix elements of the angular momentum operator are discussed later.

The relations between the pertinent one- and two-center matrix elements are
given below. It is in all cases assumed that two-center integrals are at most of the
same order as the overlap integral between parallel orbitals on the two atoms.
The correction terms in (17) are therefore neglected.

One-center elements:

Ao lev 25> =<ypler] gp>=0; [from (19a)] (202)
Ap |0 | 2>=<w |9 ap>=0; [from (19b)] (20b)
Ap | U] 2p> = oo [ U] 2> - (20c)
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Two-center elements:
Gpn | er|Ap) = (tpaler | 25> —
— 3 [Sp,p+:xp | €t | 45> + Sppralips | €0 | 44201
= (gp | 8] 203 [from (19a)] (21a)
Qpa |9 Ay = gwrn | 9| 20> —
— 3 [Sp.011xp | 0 | 20) + Sppr1ltmta | P | 2p+0]

= gpt1 |9 | 2p>3 [from (19b)] (21b)
Qpra |V Ay = ptpyr | U] 20> —
—3 [Sp,p+1{xp [ l | X;> + S;,p+1<xp+1 |1 l X;»+1>] . (21e)

The expressions for the matrix elements of the electric dipole transition
moments (20a, b) and (21a, b) are in general valid to first order only, however,
symmetry restrictions may in many cases make the integrals vanish identically.
The one-center magnetic dipole moment integral (20a) is non-vanishing for
p-orbitals. This is seen by noting the effect of the components of the angular
momentum operator Eq. (10) on a set of eguivalent p-orbitals. Considering the

component I, = — ik (y a—az —z 53?7> one obtains
lepz =0 (22a)
laby = th b, (22b)
[0z = — i by . (22¢)

At least one component of the operator (10) will hence “turn” ¥, into a p-orbital
with a component along the direction of y,, thereby giving (20¢) a non-zero value
(except in the unusual case where the two orbitals happen to be radially ortho-
gonal). By the same token the two center magnetic moment integral (p | I | xpr1)
appearing in Eq. (21¢) is equal to ¢% times an overlap integral since at least one
component of { will turn y, .1 into an orbital parallel to y,. The two terms in (21c)
are hence of approximately the same magnitude and the phases are such that
they in general tend to cancel if the overlaps Sp pis and Sj,,,, are both non-
vanishing. In fact, the right hand side of (21¢) vanishes identically for p-orbitals
perpendicular to the internuclear axis if ¥, is equivalent to %, for all p.

The relations in this section are all derived under the assumption of two
delocalized molecular orbital sets, whereas conventional treatments of # — mt
excitations, e.g. in ketones {7, 16], assume a delocalized m system but a single
localized n orbital. The latter case is represented by setting S, , = dp,, leaving
only 4, = y, for that particular orbital. The correspondingly simplified versions
of Egs. (17) through (21) are obtained by neglecting all S}, retaining only the
unprimed 85,4 The only integral which is affected by this is the two-center
integral (21c) in which the cancellation of terms discussed above is contingent
upon the non-vanishing values of both Sy, 511 and S, ,..1. If only Sp, p41 is retained
the last term is only approximately half the value of the first term and one obtains

Qpta |1 1> ~ 2 8p,p11{2p | 1 | 4> (23)
yielding a non-neglicible first order contribution.

24*
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This discussion shows that the only matrix element which is affected by the
orthogonalisation in the case of two mutually orthogonal basis sets is the magnetic
transition moment (21c¢) for which special caution should be exercised. Eq. (21¢)
is, however, correct to first order and can be employed to give the actual value of
the integral in any particular case.

4, Conelusion

According to (13), (14), (20) and (21) it is consistent, to first order in a typical
nearest neighbour overlap integral, to use non-orthogonal atomic orbitals for the
evaluation of molecular electric and magnetic dipole transition moments at the
same time as the ZDO approximation is invoked for the calculation of the corre-
sponding energies, except for two integrals. These two are the nearest neighbour
matrix elements of respectively the dipole length operator, Eq. (8), in the case
where the atomic orbitals belong to the same basis set, section 2 Eq. (143), and
the magnetic moment (angular momentum) operator, Eq. (10), in the case where
the orbitals belong to two different, mutually orthogonal basis sets, section 3
Eqgs. (21¢) and (23). Both of these matrix elements are of first order when evaluated
from non-orthogonal orbitals. The nearest-neighbour dipole length integral, (14a),
can in the ZDO approximation be neglected for most purposes, as discussed in
section 2b, whereas it appears necessary to estimate the value of the two-center
magnetic moment integral (21¢) in each case. It should be remembered that the
non-nearest neighbour two-center transition moment integrals are in general of
second order and that their inclusion, for the sake of consistency, requires explicit
consideration of the second order terms which are neglected in this discussion.

A second piece of information which can be gained from the derivations
concerns the relative merits of the electric dipole length operator (8) and the linear
momentum operator (9) in the calculation of electric dipole transition intensities.
The two procedures will in general yield different results when approximate
wavefunctions are used. It was noted in Section 2b that the first order terms
vanish identically in the expansion of the dipole velocity matrix elements, (13b)
and (14b), whereas the nearest neighbour dipole length element, (14a), still
contains a small first order contribution in the orthogonalized basis. From this
point of view the relations therefore suggest an advantage in using dipole
velocity matrix elements rather than dipole length elements in conjunction with
the ZDO approximation, unless the proper value of (14a) is assessed by actual
calculation.
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